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Abstract First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges
are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state
when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a
thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the
first dynamically self-consistent model of this process and show that bulge formation is controlled by the
relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge
formation was a geologically slow process lasting several hundred million years, that the process was
complete about 4 Ga when the Moon-Earth distance was less than ~32 Earth radii, and that the Earth in
Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen
hydrosphere due to the fainter young Sun.

1. Introduction

The Moon'’s tidal-rotational bulges are abnormally larger than predicted from the hydrostatic theory for the
present-day lunar rotational and orbital states, as has been recognized for over two centuries (Laplace, 1798).
The most recent measurement by Gravity Recovery and Interior Laboratory mission showed that the (unnor-
malized) spherical harmonic degree 2 coefficients of the Moon'’s gravitational anomalies, C,¢ and Cs,, which
characterize the size of the bulges, are —2.03 x 10~ * and 2.23 x 107>, respectively (Zuber et al., 2013), and
they are about 22 and 8 times larger than their corresponding hydrostatic values (Garrick-Bethell et al.,
2014; Keane & Matsuyama, 2014). After correcting for the effects from large basins and true polar wander,
Cypand Cy, become —1.56 x 10~ *and 3.88 x 107>, respectively, and remain about 17 and 14 times their cor-
responding hydrostatic values (Keane & Matsuyama, 2014).

The prevalent hypothesis for the Moon's excess bulge is that it is a remnant feature, called a fossil bulge,
“frozen in” from an early Moon that had a larger bulge because the Moon was closer to the Earth, spun
faster, and experienced larger rotational and tidal forces (e.g., Jeffreys, 1915; Lambeck & Pullan, 1980;
Sedgwick, 1898). As the Moon receded from the Earth due to Earth’s tidal dissipation, it cooled to form a
strong outer layer (i.e,, lithosphere) that thickened with time, and the early bulge might have been partially
to fully retained against hydrostatic adjustment (Jeffreys, 1915; Lambeck & Pullan, 1980; Sedgwick, 1898).
The corrected C,q and Cy; values are consistent with the fossil bulges formed on a synchronous lunar orbit
with small eccentricity (Keane & Matsuyama, 2014) (Figure 1a). Previous studies have considered a variety of
complicating factors including nonzero eccentricity and nonsynchronous spin-orbit resonances (e.g.,
Garrick-Bethell et al., 2006) and suggested that the bulges might have formed when the lunar orbit
semimajor axis a ranged from 15 Rg to 32 Rg (e.g., Garrick-Bethell et al., 2014; Keane & Matsuyama, 2014;
Lambeck & Pullan, 1980; Matsuyama, 2013) (Re is the Earth’s radius) or 200-300 Myr after lunar
accretion (Garrick-Bethell et al., 2014). However, these estimates were based on models that either ignored
elastic lithosphere or considered elastic lithosphere that is formed instantaneously with a constant
thickness and did not take into account the time-dependent processes that are important for fossil
bulge formation.

The development of the fossil bulge is a continuous dynamic process. To describe the dynamics of bulge
formation, a method that incorporates viscoelastic rheology with time-dependent tidal-rotational forces
and lithosphere thickening due to cooling is needed. Such modeling presents challenges to conventional
computational techniques that are mostly applicable to problems with either time-invariant viscoelastic
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Figure 1. The model for the lunar fossil bulge formation and the Earth-Moon system. (a) The semimajor axis of the lunar
orbit a increases with time t, due to the tidal dissipation of the Earth that causes angular momentum transfer and
Moon'’s recession. (b) The model for the lunar fossil bulge formation with an elastic lithosphere of thickness T, and the
mantle overlying a core. (c) Time evolution of T, for a reference model. Our model does not consider the lunar magma
ocean era that may last for ~100 Myr (Elkins-Tanton et al.,, 2011) with negligibly small T,. (d) Depth-dependent viscosity at
different times. See section 2 for model details.

properties (e.g., Tromp & Mitrovica, 1999) or relatively short timescales (Zhong et al., 2003). In this study,
by employing a semianalytical computational method (Text S1 in the supporting information), we illustrate
the development of lunar fossil bulges with time and determine how the size of the bulges depends on
the Moon'’s orbit evolution and cooling history. Since the lunar orbital evolution is largely controlled
by tidal dissipation of the Earth, that is, its Q value (e.g, Lambeck & Pullan, 1980), our study may
provide constraints on the dynamics of the early Earth and Moon, based on the observation of the
lunar fossil bulge.

2. Models and Methods

We present the first dynamically self-consistent model for lunar fossil bulge development, in which we
consider a viscoelastic Moon that is subject to long-term (~4 Gyr) change of tidal-rotational state and viscoe-
lastic structure (Figure 1). Here we show and discuss the governing equations, the models for lunar mantle
rheology and lunar orbital evolution, and our computational method.

2.1. Governing Equations

We consider the Moon's mantle as a viscoelastic spherical shell that deforms in response to time-dependent
tidal-rotational potential or force (Figure 1). The time-evolving surface deformation or the “bulge” formation
can be solved by the conservation equations of mass and momentum. By assuming an incompressible,
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viscoelastic, and self-gravitating lunar mantle, the two governing equations are expressed (Zhong et al.,
2003), respectively, as

Vu=0, (1)
V-6 + poVo + poVV — pig — V(pogu,) = O, @

together with the Poisson’s equation
V2p = —4xGpf, (3)

where u is the displacement vector with u, being in the radial direction, ¢ is the gravitational potential due to
deformation, V is the applied potential (e.g., rotational and tidal potentials), 6 is the stress tensor, pg is the
density and is constant due to incompressibility, g is the gravitational acceleration of the Moon, p§ = —V-
(pou) is the Eulerian density perturbation, and G is the gravitational constant.

The core-mantle boundary (CMB) has a radius of 340 km (Weber et al., 2011) with a liquid and self-gravitating
core, and the surface is at the lunar radius of 1,740 km. Stress-free boundary conditions are applied to the sur-
face and CMB such that both boundaries can deform in response to the applied potential and the gravita-
tional potential associated with mass anomalies of the boundary displacement. By solving the governing
equations under the given boundary conditions and for certain rheological models and applied potential
V, we determine the displacement, gravitational anomalies, and stress for the Moon. The surface displace-
ment and gravitational anomalies are then compared with the observed lunar bulge.

2.2. Rheological Models and Lithospheric Thickening With Time

We adopt a simple Maxwellian rheology (i.e., elastic and viscous strains are additive) (Zhong et al., 2003) to
describe the viscoelasticity of the lunar mantle and lithosphere, which is given by

c+ﬁ6:f<P+ﬁP>l+2né, @)
u p

where g is the strain and ¢ = 15 (Vu + VTu), Pis the pressure, u is the shear modulus, 7 is the viscosity, and the
dot denotes time derivative. For our incompressible viscoelastic model, the lunar mantle density and shear
modulus are taken as constants 3,400 kg/m> and 6.5 x 10'° Pa, respectively, consistent with the values
inferred from seismic studies (Weber et al., 2011).

The viscosity depends strongly on temperature and hence the lunar thermal history. Given the important role
of the lithosphere in supporting the bulges (Lambeck & Pullan, 1980; Zhong & Zuber, 2000) and the uncer-
tainties in lunar thermal evolution and mantle rheology, we use a thickening elastic lithosphere with a thick-
ness T, as a surrogate for the viscosity evolution as the Moon cools. In the absence of any heating, the cooling
of planetary mantles following the solidification of a magma ocean would cause the lithospheric thickness to
increase with time t as /xt, where « is the thermal diffusivity and T, would be >100 km by t ~ 500 Myr (Watts
et al., 2013). However, tidal heating and radiogenic heating could significantly slow down the early Moon's
cooling and even prolong the magma ocean for >100 Myr to explain the lunar crustal ages (Elkins-Tanton
et al, 2011; Meyer et al., 2010), hindering lithospheric thickening.

Thickness of elastic lithosphere, T, can be determined by using observed gravity and topography anomalies
of geological features and can help inform us about mantle viscosity structure (e.g., Zhong & Watts, 2013).
The mare basalts were formed at ~3.7-3.9 Ga, enabling estimates of T, for that time period. The inferred T,
is on average ~50 km for the lunar basins, but significant spatial variabilities in T, exist (Arkani-Hamed,
1998; Audet & Johnson, 2011; Solomon & Head, 1980; Sugano & Heki, 2004; Wieczorek et al., 2006). In our
model, time t = 0 is when the lithosphere starts to form and grow, following solidification of the magma
ocean ~100 Myr after lunar accretion (Elkins-Tanton et al., 2011; Meyer et al,, 2010). Our model does not
include the magma ocean era, which with negligibly small T, does not support the fossil bulges. In our model,
Te=0att=0and T, =50 km at mare basalt formation time (i.e., our model time t = 500 Myr or 3.9 Ga) serve as
two anchor points. In our reference model, T, increases from 0 at t = 0 to 50 km at t = 500 Myr as v/t and then
to 150 km at t = 4.4 Gyr at present (Figure 1c). At any given time, the viscosity for elastic lithosphere is set
sufficiently high (i.e., 10°° Pa s) to maintain elastic behavior, and the viscosity below the lithosphere decreases
to mantle background viscosity of 57 = 10%% Pa s over the thickness of 2 T, (Figure 1d). This time-dependent
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model for lunar lithosphere and viscosity undoubtedly has quite some uncertainties. We have performed
sensitivity studies to examine the robustness of our results. As to be demonstrated later, our results are
mainly sensitive to T, evolution before the bulge formation is completed (i.e., for t < 400 Myr for all the
relevant cases considered in this study) but are independent of mantle viscosity and T, evolution once the
bulge is produced (provided that T, does not decrease with time).

2.3. Applied Potential From Rotational and Tidal Effects and Its Time Dependence

The tidal-rotational forcing depends on lunar rotational rate and orbital state. Theoretical studies of lunar
orbital and rotational evolutions suggest that the Moon may have experienced periods of nonzero eccentri-
city, nonsynchronous spin, and higher obliquity (i.e., the Cassini state transition) (e.g., Garrick-Bethell et al.,
2006; Siegler et al., 2011). Although their timings are largely unknown, these orbital and rotational states
may have had implications for the lunar fossil bulge (Garrick-Bethell et al., 2006; Keane & Matsuyama,
2014; Matsuyama, 2013). However, Meyer et al. (2010) propose that the lunar bulge cannot be possibly
formed with large orbital eccentricity because of the resulting large elastic deformation, suggesting that
the bulge may have been formed after lunar orbital state is largely stabilized. Here we assume that the
Moon is on a circular, tidally locked synchronous orbit relative to the Earth at any time. The resulting spherical
harmonic degree 2 tidal potential is (Wahr et al., 2009)

3GMer? 1 1
V= 2a§r A (1 —3cos?0) +§ sin20cos2¢ |, (5)

where Mg is the mass of the Earth, a is the lunar orbital semimajor axis, and r, 8, and ¢ are the radial, colati-
tudinal, and longitudinal coordinates on the Moon. The rotational potential is

1
Vv, = 692r2(1 — 3 cos’0), (6)

where Q is the lunar rotation rate. The synchronous rotation of the Moon on a circular orbit leads to
GMg/a® = Q2 (i.e., Kepler's third law). The total potential can be written in terms of the Legendre functions PP
(cosh) of degree and order (I,m) = (2,0) and (2,2), as

5 1
V=V, +V, =Q? ngg( cosd) + ZP%( c0s0) cos2¢| . %)

With the applied potential in equation (7), the hydrostatic theory for a “fluid” planet (i.e., the entire planet
behaves like a fluid with no elastic lithosphere to support long-term stress) would suggest that the ratio of
the (2,0) to (2,2) gravitational coefficients, C50/C,», is —10/3.

In our modeling, without loss of generality we only consider (2,0) potential in equation (7) as the applied
potential V, which can be written in spherical harmonic function Y,4(0, ¢) as

5 5
V= —gﬂzrng( cos) = —ggzﬂyzo(a o). €)

This is entirely justified, because the displacement and gravitational responses (i.e., Love numbers) to (2,0)
and (2,2) applied potentials are identical and independent from each other, for a depth-dependent
viscoelastic structure.

The applied potential decreases monotonically with time as the Moon’s rotation rate Q decreases on a tidally
locked synchronous orbit that recedes from the Earth (i.e., semimajor axis a increases), due to the Earth’s tidal
dissipation (Figure 1a). We employ a simple but commonly used orbital evolution model by Murray and
Dermott (1999) to calculate the semimajor axis a(t) through an integral form of the equation

13k

a(t)? = a(to)? + -2 At — to), ©)
2Q

where tg is a starting time (not necessarily t = 0), Q is the average tidal dissipation factor in the period from tg

3mR;
Me

Earth’s mass, and radius, respectively. Following Lambeck and Pullan (1980), the Earth'’s tidal Love number k;
is taken as a fixed value of 0.3 in our model. This is justified for two reasons. First, k; is determined by the
Earth’s elastic parameters that are insensitive to temperature. For example, shear modulus changes by

to t, k, is the Earth’s tidal Love number, A = [G(Mg + m)]% is a constant with m, Mg, and Rg as Moon'’s mass,
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Figure 2. Time evolution of semimajor axis a of lunar orbit and lunar bulge sizes. (a) Time evolution of a for different values
of Q and ag (Murray & Dermott, 1999). a can be converted to the applied potential that drives the deformation. (b) Time
evolution of model bulge size that is normalized by the present-day hydrostatic value for models with no lithosphere (i.e.,
fluid) and Qq = 200 and three different ag. (c) The same as in Figure 2b except for including the thickening lithosphere
in Figure 1c. The dashed curve is the same as that in Figure 2b with ag = 17 Rg. (d) The same as in Figure 2c but for Q; = 25
and three different ag. In Figures 2b-2d, the yellow bar marks the range of observed normalized bulge size (i.e., 15 to 20).
The thin vertical dashed line in Figures 2c and 2d marks the bulge formation time zpy.

<10% for ~500 K variations in temperature (e.g., Anderson, 1989). Second, after the relatively rapid
solidification of the mantle magma ocean (e.g., Carlson et al,, 2014), the Earth’s mantle may only cool by
<500 K throughout its geological history (e.g., Herzberg et al., 2010). Therefore, our lunar orbital evolution
model for semimajor axis a (i.e., equation (9)) and hence the applied tidal-rotational potential (Figure 1a)
has two controlling parameters: initial semimajor axis at t = 0, do, and Earth’s tidal dissipation Q value. A
larger Q value implies less tidal dissipation in the Earth and slower lunar recession from the Earth. Since
the recession rate d<a?, a increases significantly faster at earlier time stages (Figure 2a). Note that the
orbital evolution in equation (9) depends on ratio k,/Q which is used in some studies (e.g., Bills & Ray,
1999) as the controlling parameter.

Earth’s tidal Q value may vary significantly in the past (Bills & Ray, 1999). The present-day Q value is largely
controlled by tidal dissipation in the Earth’s oceans (Egbert & Ray, 2000; Munk, 1997) and is responsible for
~3.8 cm/yr lunar recession rate as observed from the lunar laser ranging (Dickey et al.,, 1994). Although the
Q value is ~12 as constrained by the lunar laser ranging data (e.g., Bills & Ray, 1999) using k, = 0.3, it must
be significantly larger in the past to prevent a from collapsing to zero at 1.5 Ga (e.g., Bills & Ray, 1999;
Lambeck & Pullan, 1980). Using lunar orbital evolution model of Webb (1982), Bills and Ray (1999) showed
that k,/Q between 1 and 3 Ga is ~30% of the present day's, corresponding to Q ~ 40. Lambeck and Pullan
(1980) used Q ~ 30 in their lunar orbital model. However, observational constraints on long-term lunar orbital
evolution come from sedimentary records of tidal rhythmites that suggest that a increases from 58 Rg at
~620 Ma to the current 60 Rg but is less constrained in early times (Williams, 2000). Using equation (9), the
observations suggest that Q is 23.5 for the last 620 Ma.

Our lunar orbital evolution history is divided into three stages defined by different Q values. The third stage is
for the most recent time period from 620 Ma to the present day with Q = 23.5 (i.e., Q). The first stage (Q,)
covers the first 500 Myr of our model (i.e., from 4.4 to 3.9 Ga) and employs a variable Q value from 25 to
500. Note that the present-day mantle Q is ~400-500 at tidal frequencies (Anderson & Given, 1982) which
can be viewed as an upper bound on Q;. Also, the ending time of the first stage at 3.9 Ga corresponds
approximately to the Hadean-Archean boundary. For given ao, Q;, and Qs, Q for the second stage, Q,, is deter-
mined by bridging a between the first and third stages (Figure 2a). Q, is found to range from 33 to 40 for our
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models. Orbital evolution models with more time stages are possible but may not be justified by available
constraints. Note that the evolution of a is mainly controlled by Q, while the effect of a, is secondary. For
example, for Q; = 25 but three different values of ay, a becomes nearly the same at t ~ 5 Myr and is
~43 Rg at t = 500 Myr (Figure 2a). However, for Q; = 200, a evolves much slowly and is ~32 R at
t = 500 Myr for different ag. The semimajor axis is converted to the rotation rate and applied potential V in
equation (8), using the relation Q* = GM/a>.

2.4. Computational Method

For this study, we develop an efficient semianalytical, propagator matrix based method to solve the govern-
ing equations (1)-(3) with time-dependent viscoelastic rheology (4) and applied potential (8) for long-term
bulge development of the Moon. In this method, equations (1)-(4) are discretized and solved directly in
the time domain, and in each time step the spatial dependence of any variable is expressed as a spherical
harmonic function (i.e., Y20(0, ¢)) in lateral directions and as discrete layers in the radial direction. The theo-
retical derivation of the method, method validation, and model time and radial resolution are given in the
supporting information (Text S1 and Figure S3).

3. Results

We compute the size of lunar bulge as function of time for different orbital evolution histories (e.g., Figure 2a)
with model variables ag and Q,. We measure the model lunar bulge by computing ratio @,/®, (referred to as
normalized bulge size hereafter), where @, is the time-dependent degree 2 zonal gravitational potential
anomaly from our model and @, is the present-day hydrostatic counterpart (Figures 2b-2d). Since the
observed present-day @,/®, after basin correction is ~17 (Keane & Matsuyama, 2014), a scenario is taken
as “successful” if the modeled present-day normalized bulge size falls within a range of 15 to 20
(Figures 2b-2d). It is worth noting here that the basin-corrected gravitational potential anomalies by
Keane and Matsuyama (2014) did not account for possible contribution from degree 2 crustal thickness var-
iations that tidal heating may have caused (Garrick-Bethell et al.,, 2014). However, based on crustal compen-
sation calculations using degree 2 basin-corrected topography from Garrick-Bethell et al. (2014), we suggest
that such an effect may modify the corrected @,/®,, by no more than 15% (Text S2), supporting our model
and interpretation that the basin-corrected degree 2 gravity anomalies are mainly caused by the fossil bulge.

We first computed a fluid model with Q; = 200 (Figure 2a) and a viscosity of 10>? Pa s everywhere (i.e, no

lithosphere). In this model, the Moon would behave like a fluid planet and cannot support deviatoric stress
over several Maxwell times (i.e., ~10° years). The model bulge sizes decrease with time as a increases
(Figure 2b) or the applied potential decreases. As expected, the normalized bulge size is 1 at the present
day for the fluid models, significantly smaller than the observed values that we take as ranging from 15 to
20 here. Note that the bulge sizes for the fluid models agree with the hydrostatic value at any given time.

The decrease in the applied potential with time is equivalent to applying a pressure load to the surface. This
load would be fully compensated by surface displacement or topography when no lithosphere is present
(e.g., Figure 2b). However, the lithosphere may partially support this load, causing lithospheric stress and
reduced surface topography (i.e., the fossil bulge). In our model with thickening lithosphere, for the first
~10 Myr when the lithosphere is still thin, the bulge size is similar to the fluid model (Figure 2c). However,
as the lithosphere thickens and starts to support stresses (Figure 3), the bulge does not reduce as much
compared with the fluid model and remains unchanged after several hundred million years (Figure 2c). For
the case with Q; = 200 and ag = 17 Rg, the present-day bulge size is well within the observed range
(Figure 2c). For this case, the lithospheric stress reaches a maximum of ~25 MPa at depths <30 km after
several hundred million years, and the stress field remains largely unchanged afterward (Figures 3a-3d).
Given that lithospheric strength exceeds 100 MPa (Kohlstedt & Mackwell, 2009), the lithosphere should be
able to maintain the bulges with lithospheric stress.

We have computed a large number of cases with Q; from 25 to 500 and aq from 5 R to 25 Re. The results show
that for a given Q;, there is a limited range of a, (~3 Rg) that can reproduce the observed bulges, and too
small (large) of an ag overpredicts (underpredicts) the observed bulge size (Figure 4a). Also, a smaller Q
needs to be compensated by a smaller ag to reproduce the observed bulges (Figure 4a). For example, for
Q, = 25, the observed bulge is obtained for ag ~ 11 R (Figure 2d), much smaller than ag ~ 17 R for
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Figure 3. Spatial and temporal distribution of second invariant of deviatoric stress for the reference model with Q; = 200
and ag = 17 Rg. The stress at different colatitude (from 0 to 180°) for the top 100 km of the Moon at (a) 10 Myr, (b) 100 Myr,
(c) 500 Myr, and (d) 4.4 Gyr (or present day). Note that the stress is concentrated at shallow depths and remains largely
unchanged after the bulges are formed.

Q; = 200. This is because for smaller Q; but a fixed aq, a increases more rapidly in the early time period
(Figure 2a) during which the elastic lithosphere is thinner and maintains a smaller bulge (Figures 2c and 2d).

The bulge formation is a continuous process that occurs over some time period (e.g., Figure 2c). However, for
models that reproduce the observed bulges, we may define a bulge formation time, 7y, marking the time
when the bulge size falls within a factor of 1.1 of the present-day value (i.e.,, when the bulge is largely stabi-
lized). For example, for Q; = 200 and agp = 17 R, 7,s = 380 Myr, while for Q; = 25 and ag = 11 R, s = 80 Myr
(Figures 2c and 2d). Accordingly, the semimajor axis g, can be found from the orbital evolution (e.g., Figure 2a)
to be 31.5 Rg and 34 Rg, respectively, for these two cases. For all the cases that reproduce the observed
bulges, while 7y, ranges from 70 to 550 Myr, ays is in a tighter range of 30 Re to 34 Rg (Figure 4b). A larger
Q; corresponds to slower bulge formation (Figures 2c and 2d).

The inferred T, of 50 km at mare basalt formation time may vary spatially with considerable uncertainty
(Arkani-Hamed, 1998; Audet & Johnson, 2011; Solomon & Head, 1980; Sugano & Heki, 2004; Wieczorek
et al,, 2006). We found that varying T, between 30 km and 80 km at t = 500 Myr leads to ~ + 20% change
in the present-day bulge size (Figure S1a). Such changes can be compensated by varying ag by <~1.5 R¢
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for a given Q, (Figure 4a), suggesting the robustness of our results. We
also found that the bulge evolution is insensitive to how T, increases
with time after the bulge formation and to mantle interior viscosity.
For example, the bulge evolution for cases in which T, is kept at
50 km after 500 Myr is nearly the same as that for the corresponding
cases with the lithospheric thickening with time after 500 Myr
(Figure S1b). Reducing mantle interior viscosity from 10%% to 10%' Pa s
does not change the results either (Figure S1c).

4, Conclusion and Discussion

We have formulated the first dynamic model for lunar fossil bulges.
Using a propagator matrix based, semianalytical method for comput-
ing viscoelastic deformation, the model determines bulge formation
for the Moon with lithospheric thickening and time-decreasing tidal-
rotational forcing due to the lunar recession from the Earth. We demon-
strate that the observed lunar bulges may have been produced in the
first 100 Myr to 500 Myr following the formation of lunar lithosphere,
depending on tidal Q value of the Hadean Earth (i.e., Q; in Figure 4).
However, we suggest that the lunar bulges were produced relatively
slowly with Q; considerably larger than the Q value (Q; = 23.5) for
the last 620 Myr. For Q; ~ 25, the bulges would have formed rapidly
before the lithosphere thickened significantly (Figure 2d), and the litho-
spheric stress would have been confined to <5 km depths with a max-
imum value of 75 MPa (Figure S2). The lunar crust is heavily fractured in
general to depths of 5-10 km, as interpreted from crustal porosity mod-
els derived from Gravity Recovery and Interior Laboratory gravity data
(Besserer et al,, 2014). The bulge stresses would likely have been
relieved by the shock pressures of sufficiently large impacts, but we

can also state that the frictional strength of lithosphere is <75 MPa over an ~5 km depth interval (Byerlee,
1978). However, if the bulges formed slowly with Q; ~ 200-300, then there would have been smaller bulge
stresses extending to greater depths (Figure 3), and these stresses would likely have been supported by the
lunar lithosphere over the Moon'’s geological history.

The slow bulge formation with large Q; corresponds to slow recession rate for the early Moon. For example,
the mean recession rate is ~0.08 R/Myr for the first 100 Myr of the model with Q; =200 and ag = 17 Rg, and by
contrast it is ~0.24 Rg/Myr for the same period for Q; = 25 and ao = 11 R (Figure 2a). Although the early lunar
orbit evolution is likely more complicated (e.g., Meyer et al.,, 2010; Siegler et al,, 2011), considering that the
Moon might have receded from several Earth radii where it was likely formed to ay over the magma ocean
era, the models with Q; ~ 200-300 are more compatible with ~0.1 Rg/Myr recession rate over the
~100 Myr lifetime of the magma ocean (Elkins-Tanton et al., 2011).

Therefore, we conclude that the lunar bulges had been formed by ~4 Ga (i.e., t ~ 400 Myr in Figures 2c and 4b)
when a ~ 32 R and the Earth had a relatively large Q; value of ~200-300. We want to make four remarks on
this conclusion. (1) Our proposed large Q for the early Earth is consistent with studies of lunar obliquity (Chen
& Nimmo, 2016) and orbital history (Bills & Ray, 1999; Lambeck & Pullan, 1980). (2) Although our formulation
for fossil bulge formation differs significantly from previous studies, it is interesting to note that our conclusion
of a ~ 32 R when the bulge formation is completed is consistent with Garrick-Bethell et al. (2014) but larger
than those from Lambeck and Pullan (1980) and Matsuyama (2013). (3) We reiterate that our results on Q are
obtained with k, = 0.3 (i.e., elastic tidal Love number) (e.g., Lambeck & Pullan, 1980), although the orbital
evolution depends on ratio k,/Q (equation (9)). If a fluid Love number k; ~ 0.96 is used as in Chen and
Nimmo (2016), our results would remain the same, except that all the Q values would have to be increased
by a factor of 3.2. (4) Although different time epochs may be considered in future studies, we do not think that
our conclusion is biased by the choice of 500 Myr for the first epoch, because the bulge formation time differs
significantly among models with different Q; and is mostly much less than 500 Myr (Figure 4b).

QIN ET AL.



@AG U Geophysical Research Letters

10.1002/2017GL076278

Acknowledgments

This work was supported in part by the
GRAIL Project through subcontracts
from MIT and by a grant from NASA
(NNX14AQ06G) and NSF 1135382. The
authors thank James Keane and lan
Garrick-Bethell for helpful reviews. This
study uses no new observation data,
and computer output data used to
make the figures can be obtained from
the corresponding author S. Z. or C. Q.
upon request (by emailing shijie.
zhong@colorado.edu).

The present-day Earth'’s tidal dissipation occurs predominantly in oceans, both at shallow seas and deep open
ocean (e.g., Egbert & Ray, 2000), leading to relatively small Q (e.g., Bills & Ray, 1999). The significantly larger Q
(~200-300) for the early Earth before 4 Ga (or the Hadean) inferred from our study, compared with that for
the last 4 Gyr (i.e, Q; ~ 35 from 4 Ga to 620 Ma and Qs ~ 25 for the last 620 Myr), suggests that the
Hadean Earth might have a very different surface environment from that of today and the last 4 Gyr.
Continental area in the Hadean was probably significantly smaller than that since the Phanerozoic (Stein &
Ben-Avraham, 2015), and if the Hadean Earth had a deep ocean and smooth ocean floor, then the absence
of shallow seas would reduce tidal dissipation. However, depending on seafloor roughness, dissipation in
the deep ocean by itself may be significant enough to result in a too small Q to account for the slow lunar
recession required by the lunar bulge formation.

A more plausible inference from our model is that the Hadean hydrosphere, if existent, may have been frozen
to depth in a “snowball” state. A frozen snowball state is geologically evident for various periods in the
Proterozoic (Hoffman et al., 1998; Kirschvink, 1992; Macdonald et al.,, 2010) and would be consistent with
the findings that the oldest sedimentary rocks are younger than 4 Ga (Moorbath et al., 1973; Nutman et al.,
1997; Tashiro et al., 2017). A snowball Earth at Hadean time before 4 Ga is likely as a consequence of the
fainter early Sun that emitted ~30% less energy than today (Bahcall et al., 2001; Ringwood, 1961). High con-
centration of greenhouse gases including CO, or methane or both is considered crucial to counter the effect
of the faint early Sun as to produce oceans in the Archean (Feulner, 2012; Sagan & Chyba, 1997). Therefore, an
important question is how and when the greenhouse gases are accumulated to a sufficient level to thaw a
frozen hydrosphere from the Hadean to Archean Earth (Feulner, 2012; Marchi et al., 2016). Although direct
evidence for a snowball Hadean Earth is lacking, the mechanism for escaping the snowball state is still
debated (Feulner, 2012), and Q's dependence on ice water fraction for a snowball Earth (e.g., Wunsch,
2016) and on continental configuration (e.g., Lambeck & Pullan) is uncertain; our lunar fossil bulge formation
model provides new and unique insights into studies of climate and surface environment of the early Earth.
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Introduction

The supporting information presents the theoretical development and validation of
our computational method for lunar fossil bulge formation (text S1) and also a discussion
on the effect of crustal compensation on the basin corrected gravitational potential
anomalies (text S2). Figures S1 and S2 show additional results from different rheological
models that are used for comparison and discussion in the main paper. Figure S3 shows
benchmark results of our method against a finite element method.



Text S1.
Computational method for lunar bulge formation

We describe in detail our semi-analytical, time domain, and propagator matrix based
method for solving the governing equations (1) — (3) with time-dependent viscoelastic
rheology (4) and applied potential (8). The general strategy is to use a backward Euler
method for time discretization of all the equations. The time-discretized equations are
then expanded in spherical harmonics, and solved in spatial domain with the application
of propagator matrix method. This method is similar to that used in post-glacial rebound
studies (Zhong et al., 2003) and has seen applications in studies of planetary deformation
(Hanyk et al., 1996; Kamata et al., 2012; Robuchon et al., 2010; Tobie et al., 2008).
1. Time discretization

We define the increments of displacement, gravitational potential, tidal-rotational

potential and strain from time step N—1 to n, respectively, as

Vo=Uu,—U,_,
5¢n =0y = @ha
é\/n :Vn _Vn—11

1
Ag,=¢,—€,, = E(VV” +VTv,).

The time derivatives of stress and strain can be approximated by

c')- ~ on _0I1—1

! At

(S1)
(S2)

(S3)

(S4)

(S5)

(S6)



respectively, where At is the time step.

Substituting (S1) — (S6) into (1) — (4), and using the following scaling,

V=RV t= %t’, O =10, p1 = totd', n=1571", 9=47Gp R3¢,
0

where R, is Moon’s radius, u, and 7, are the reference shear modulus and viscosity,
we obtain the corresponding equations at time step n in a non-dimensional form
(dropping out the prime superscripts), as

V-v. =0,

V-[o, +&py (@, +V, —gu)1]=0,
Visp, =0,

o =-Pl+2fjAe +a o _,
n n n n n - n-1

: o - 4xGplR? .
where ¢ is a normalization coefficient and ¢ =P, (S11), particularly,
Hy
e g =—"Tn_ B =Pa4+gP . inwhichz, =1 isthe normalized
"oT AL 7, + At Hy

Maxwell time; the last term represents the pre-stress. As a special case, when t=0 (or
n=0), the pre-stress is zero and (S11) can be reduced to

c,=—-PFl+2ue,,
which describes the pure elasticity of the medium. Note that in (S9) and (S10), we

already apply the incompressibility condition with constant density p, for the medium,

hence the Eulerian density perturbation o = 0. The solution of (S10) can be expressed

directly by the surface and CMB topography, as described in latter section.

(S7)

(S8)
(S9)
(S10)

(S11)

(S12)



We solve (S8) — (S11) for incremental deformation and gravitational potential at time
step n. The final deformation or ‘bulge’ is the cumulative of the incremental deformation
from all previous time steps, as
U, =Vo+V, +V, 44V +V, . (S13)
The final gravitational potential due to the deformation is
@, = 0Py + 0P, + 0, ++--+ 0@, , + 0@, (S14)
which we solve in the main text for the size of the bulge. Such time discretization for
viscoelastic deformation problem can also be found in a finite element formation for
post-glacial rebound problem (Zhong et al., 2003). However, we solve these equations
using a propagator matrix technique that is more efficient than numerical methods for a
planetary mantle with 1-D viscosity and elastic structures as we assume here for the lunar
mantle.
2. Propagator matrix method
We use a conventional technique called the propagator matrix method to solve (S8) —
(S11) semi-analytically (Hager & Connell, 1989; Qin et al., 2014). In order to do so, the
unknown variables in the equations need to be expanded in spherical harmonics to
separate the radially dependent factors from the angular dependence. Here, we define a

stress-related auxiliary variable T, for convenience of formulation, as

T,=0,-,0,,. (S15)
The incremental displacement, - T, and gravitational potential are expanded in spherical
harmonics, respectively, as follows,

VI =YY Vo = YoV, Vg = Y5Yi0, (S16)



T =YY T =YV

Im?

T = YaYio, (S17)

50, = YV, (S18)
In this notation, (v;', vy, v;) and (T}, T, T.;) denote radial, co-latitudinal and east-
longitudinal components of incremental displacement and - T, in spherical coordinates,
respectively. Y., =V,,(8,9) is the spherical harmonic function, where | and m are

harmonic degree and order, respectively. The derivatives of Y, are defined as

d¥,, yo_ 1 dY,

Y. = 40 " i (S19)
Y, Ys,+,Ys are all r-dependent unknown factors that are to be solved.
In principle, Y,, can be spherical harmonic of any degree and order, i.e., (I, m).
However, in this study, we only consider the degree-2 tidal-rotational potential (forcing)
as in equation (8). The time-discretized, non-dimensional form of (8) can be simplified as
V, =" (r,t)Y,,, (S20)
where ®" is the potential magnitude at time step n (similarly, 6" is the magnitude of
the differential potential oV, ). Furthermore, the total displacement, stress and
gravitational potential can also be expressed in the expansion form, such that
U7 = 2% Uy = 2V, Up =Z3Yp0, (S21)
o =Ny, Ol =20, Ol = 20N, (522)
00 =20,y (S23)

where (I, m) =(2,0), and z,z,,---,z; are cumulative of y;,y5,---, Yz , respectively,

through n time steps.



Using the expansion form (S16) — (S18), the partial differential equations (PDES)
(S8) — (S11) can be converted into a 4-by-4 linear system of ordinary differential
equations (ODEs), and rewritten into a matrix form

dX,
dy

A X,
where y =In(r), X, is a4-by-1 solution vector at time step n and

X, =0y, y5.rZ", ry;1".

A, is a 4-by-4 matrix which relates to the material properties of the lunar mantle as well
as the harmonic degree of the forcing, and

-2 L 0 O
-1 1 0 i
An= nn y
127y —-6Lij 1 L
—6ij  2(2L-Df, -1 -2

where L=1(1+1)=6 since | =2. In(S25), Z" is a compound quantity that results from

the equation of motion (S9), and

n-1

Z" = Y3 +(py (600" + Y5 —9y) + B oy (0" + 257 —g7),
where S, =1—«, . Note that due to incompressibility of the lunar mantle, the

deformation-induced potential is directly related to the radial displacement at the surface
and the core-mantle boundary (CMB), as (Zhong & Zuber, 2000)

n 1 | n n
Ys = m[rb (?b)l 1Ap0by1 (r,)+ rIAPOSyl (r)1,

n— 1 r +! n— n-—
25 = =[5 () Az (1) + T ALz ()],
21417 " r

(S24)

(S25)

(S26)

(S27)

(S28)

(S29)



where | = 2 in this study, r, and r, are radii of the CMB and the surface, while Ap,, and
Ap,, are the positive density contrast across the CMB and the surface.
The propagator matrix method is favorable to solve (S24) given the simple linearity
of the equations. Assuming two points at r, and r, within a uniform material layer and
r, > 1, the solution at r,, X, (r,), can be obtained directly through
X (1) = P (1) X, (1), (S30)
as long as the solution at r, has been determined, where P.(r,,r;) is the propagator

matrix, and
P, (1, 1) =exp[A, (7, - 7)1 (S31)
However, in order to implement propagator matrix method throughout the whole mantle,
the continuity conditions at any internal boundaries as well as the boundary conditions at
the surface and the CMB must be taken into account.
At any internal boundary, the displacement, gravitational potential, and the total stress

are continuous, that is

(] =[ve] =[%] =0, (s32)

(2] -[2] -[2] (2] -[2] -0 (539
where [ ]i denotes the jump of the enclosed quantity from lower to upper boundary,

whereas Z" (or y; ) and Yy, (i.e., components of T.) are discontinuous across any jump

of material property. Specifically,

(2] =-[a [z +po(0 + 2 -9 ] (S34)



[yi] =[]

The stress field satisfies the free surface condition

and the frictionless CMB condition
':'0'?1 = _[é/pc (an + (orkl) - gburg)]f )
where the superscripts s and b denotes surface and CMB, respectively, p, is the density

of the fluid outer core. (S36) and (S37) lead to reduction of unknowns in the solution

vectors at the surface and the CMB, which are

Xo =0y (1), y; (1), n2"(r,), 01",

and
Xn =0y (R), ¥5 (), K,Z"(r,), 00",
respectively, together with four unknowns y;'(r,), y,(r,), vy, (r,) and y;(r,) ; while
Z"(r,) and Z"(r,) can be expressed by
Z"(1,) = Aoy, ([0 (1) + Y2 (1) — 9,y (W] + B0 (1) + 227 (1) — 9,2 (r)])
and
Z" () = =0y ([000" (1) + Y2 () = G, 7 ()] + Aol (1) + 227 (1) - 9,2 (1,)]),
respectively, where Ap,, = p, and Ap,, =p. —p, -

Considering a one-dimensional numerical grid that divides the lunar mantle into N

material layers, with the grid pointsat r,,r,,r,,---, 1y, I, , the unknown solution vectors
X? and X can be linked by successive propagation of X' to the surface across the N

layers, after corrections of discontinuities at the N —1 internal boundaries. Specifically,

(S35)

(S36)

(S37)

(S38)

(S39)

(S40)

(S41)



X, (6) =P, (n, ) X,,
xn(r2) = Pn(r2’ rl){xn(rl) +Cn(rl)}!

' (S42)
X, (r) =P, (r.r.) { X, () +C, (rk—l)} ’
><n (rs) = Pn (rs 1 rN—l) { Xn (rN—l) + Cn (rN—l)}'
Therefore,
N-1
X: :Pn(rs’rb)xr?+an(rs’rk)cn(rk)’ (843)
k=1
inwhich C_(r,) is the discontinuity correction at r, , and
C,(r) =[0,0,c;(r).cr (r)1", (S44)
where
Ci (r) =-rAa,(r) {Zg_l(rk) + gpo[wn_l(rk) + Zg_l(rk) - gzln_l(rk )]} , (S45)
Cg(rk) :_rkAan(rk)Zzil(rk)’ (S46)
and A«,(r,) is the jump of «, across r,.
Based on (S38) — (S41), (S43) can be written into a system of linear equations
M, -x,=d,, (S47)
where
Xn :[yln(rs)vy;(rs)vyln(rb)’yg(rb)]-r! (548)
1+ hl Pis 0 _( Py + hz p13) — Py,
= hl Pas 1 _( Py + hz p23) — P2 ’ (549)
h3 +h1p33 0 h4 _(p31+h2p33) —Ps;
hl Pus 0 _( Pa + hz p43) —Pay



h5 plS + ql

hs Py +0,
h5p33_h6 +0; ,

hspss +0,

d_

n=

N-1
p;’s are elements of P (r,,r,), g;’s are elements of Q, = z P.(r,r)C,(r),and
k=1

h,h,,---, hy are given by

1 N 1
h = m{l’bl 1Ap0bApOs’ h, = 1,Apy, (9, _ﬁ. LAO)s

1 "
h, = {Apy, (m Apos—9s), h, = mgrbl ZA/OObAPOS’
hy =—¢1,Apy, [&on (r,)+ ﬂ:[zg_l(rb) - gbzf_l(rb)]]f
hy = APy, [ 500" (1) + Bi128 (1) - 9,20 (1)1 .
With (S8) — (S11) been reduced to (S49), the unique solution of x, fully determines the

lunar bulge at each time step.
3. Validation of computational method

We design a set of simple test cases and compare solutions for these cases from our
method with those from a finite element method, CitcomSVE (Zhong et al., 2003). The
test results show that our computational method is valid. Furthermore, these test cases
also provide physical insights into the bulge formation process and the roles of
lithosphere and change in the applied potential.

In the first three test cases, the same (2,0) potential is used with a Heaviside function
time dependence, i.e., a constant potential applied at t=0 and thereafter, but these three
cases have different viscosity structures. In the first case, the mantle has a uniform
viscosity no with no lithosphere. Before the potential is applied, the mantle is stress-free

everywhere and the surface topography is zero (i.e., no bulge). At t=0 when the potential

10

(S50)

(S51)



is suddenly applied, the Moon responds elastically with a small surface radial
displacement that, if normalized, equals exactly to the degree-2 lunar tidal Love number
h2 = 0.0409. As time evolves, the normalized radial displacement hz (i.e., the bulge
topography) increases as the lunar interior stress relaxes over a time scale of ~200tm, and
is 2.466 at t=400tm (Figure S3a). For a homogeneous planet without a core, the radial
displacement Love number h2 = 2.5. Our test calculations show that as the core radius
decreases, hz approaches 2.5, as expected. The result is in an excellent agreement with
that computed from CitcomSVE which yields h2 = 2.448 at t=400tm (Figure S3a). The
second test case differs from the first case only in having a 60-km thick elastic
lithosphere. The lithosphere reduces the surface displacement or bulge size by more than
a factor of two, because the lithosphere acts to support stress (Figure S3a). In the third
case, the lithospheric thickness increases linearly with time from 0 att = 0 to 60 km at
400 tm, but otherwise the third case is identical to the first. For the third case, the radial
displacement hz is between the first and second cases (Figure S3a). These results agree
with those from CitcomSVE within 2% at any time (Figure S3a).

In the second set of cases (cases 4-7), we test the effects of decreasing the applied
potential in models with different lithosphere structures. In these cases, we use the final
stage of test case 1 when the bulge is already created with h2 = 2.466 as the initial
conditions at t=0, but we reduce the applied potential by a factor of two either gradually
with time or instantaneously. Cases 4, 5 and 6 use the identical rheological structures to
cases 1, 2 and 3, respectively, except for dropping the applied potential instantaneously at
t=0. As expected, the bulge size or h2 decreases with time on a time scale of ~200 tm

before stabilizing at some constant values (Figure S3b). In test case 7, the applied

11



potential decreases by a factor of two gradually as a linear function of time from t=0 to
t=400tm and is then kept as constant thereafter, while the lithosphere thickens in the same
way as in case 6. For this case, the bulge decreases, following a similar trend to the
applied potential (Figure S3b). The bulge size difference between cases 6 and 7 implies
that the size of the lunar fossil bulge is controlled by the relative time scale of the two
processes: lithospheric thickening and lunar orbital recession. We take it as our physical
foundation for all of our analyses. Again, the results from our computational method for
all these cases are in excellent agreement with those from CitcomSVE (Figure S3b).

4. Computational model, time and radial resolutions

Our models cover ~4x10° years of lunar history (or ~10%tm, where tm = no/u is the
Maxwell time and is ~5000 years for 1no=10?? Pas and p=6.5x10%° Pa), and this time
duration is typically divided into ~3x10° time steps with non-uniform time increments At.
In the early lunar history when the applied potential and mantle viscosity vary more
rapidly, At is taken as 0.02tm, while in the later lunar history when time variations are
slower, At may increase to ~10tm to improve the computational efficiency.

The lithosphere in the early lunar history is thin with its thickness from 0 to 10’s km
but is important for supporting the lunar bulge and stress. It is therefore essential to
resolve the lithosphere in the models. In our standard model setup, the mantle including
the lithosphere is divided into four macro-layers: the top 50 km, 50-150 km depth range,
150-450 km depth range, and 450 km-CMB depth range. These four macro-layers are
further divided into 50, 50, 50 and 1 layers, respectively, from the top to bottom layers.
That is, the top three macro-layers that may experience viscosity changes with time due

to elastic thickness growth have a resolution of 1, 2 and 3 km, respectively. The bottom
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macro-layer from 450 km to CMB always has a constant viscosity of no and only needs
one layer in our propagator matrix based method. Numerical resolution tests were done to
show that the time and radial resolutions are more than sufficient for our lunar bulge
model calculations.

It should be pointed out that even though conventional numerical models (e.g., finite
element method) may work for viscoelastic deformation with time-dependent viscosity
(Melosh et al., 2013; Zhong & Watts, 2013), it is extremely challenging computationally
to use them at such high radial and time resolutions for 3x10° time steps as in the lunar

bulge problem here.

Text S2.
Gravitational effect of lunar crustal compensation

In this study, we used basin corrected degree-2 gravity anomaly coefficients, C2o and
C22, as direct measure of the size of lunar fossil bulge (Keane and Matsuyama, 2014).
However, C2 and C22 may also contain degree-2 gravity signal from lunar crustal
thickness variations that cannot be completely removed by basin correction. A degree-2
crustal structure may result from early lunar thermal process such as tidal heating, as
suggested by Garrick-Bethall et al., (2014). Yet, since tidal heating is significant only
when the Earth-Moon distance is less than 25Re (Garrick-Bethall et al., 2014) or t<100
Myr in our model (Figure 2a), the elastic thickness, Te, would be very small (Figure 1c)
such that the degree-2 crustal structure is likely to be largely compensated, leaving a
relatively weak gravity signal. Here, we estimate an upper bound of the degree-2 gravity

signal of crustal thickness variations through crustal compensation calculations. We find
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that such effect, if existing, would be no more than 15% of the observed degree-2
gravitational potential anomaly, and our interpretation of Cz and C22 (Keane and
Matsuyama, 2014) as being largely attributed to fossil bulge is valid.

We use both basin-corrected gravitational potential and topography anomalies from
Garrick-Bethall et al. (2014) (GB) and gravitational potential anomalies from Keane &
Matsuyama (2014) (KM) to estimate a crustal compensation effect. Because these two
studies used different principal axis coordinate systems, it is not possible to combine
these fields at the spherical harmonic coefficient level. This is also the major obstacle that
prevents us from using both gravity and topography values for our fossil bulge analyses.
However, since the power spectra of these quantities are invariant to axes rotation, we
calculate the degree-2 powers of gravitational potential and topography anomalies each in
their own frame of principal axes and to estimate the gravitational effect of crustal
compensation.

The basin-corrected degree-2 gravitational potential and topography coefficients are
summarized in Table S1, and these values are defined in gravity (KM) and topography
(GB) reference frames of principal axis, respectively. We calculate the degree-2 powers

for each set of coefficients by

I —
WI = Z (len + Slr2n ) (852)
m=0

where | and m are spherical harmonic degree and order, respectively (1=2), and Wi is the
power at degree I. C, and S, are the 4m-normalized coefficients of gravitational
potential and topography anomalies. Here we define W, ,,, W, ,,, W, , and W, . to be

the degree-2 powers with subscriptions standing for KM gravity, GB gravity, GB
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topography and model gravity due to compensation of GB topography, respectively.
Surprisingly, because the basin correction methodologies were quite different, we find
that the resultant degree-2 gravitational potential powers from the two individual studies

are almost the same (as expected for a single data set), i.e., W, ,=8.48x10° and W, ,
=8.30x10° for GB (their Table S6), differing by only ~2%. We use W, 41 gravity power

to evaluate the effect of crustal compensation.
The gravitational potential anomalies produced by a compensated topography can be

calculated at each harmonic (I, m) using the equation (Turcotte et al., 1981)

— 1+2
_ C _
Clm,c = Blic - D, (1_ij = KICIm,h , (S53)
50 R, Ro

where Ro is the mean radius of the Moon, p and p, are mean and crustal densities and

are 3340 kg/m? and 2550 kg/m? respectively, d is the mean crustal thickness of 40 km of
the present-day Moon, D is degree of compensation, and Ki is defined as a transfer

coefficient and is dependent only on I. We note that this equation applies equally to

harmonic coefficients S, and S To find out the upper bound of crustal

Imc *
compensation effect, we may simply assume that the entire degree-2 topography (Table
S1) is completely isostatically compensated at the Moho surface with Di=1, and the

corresponding gravity power is
2 _ 2 _ _
Wz,c = Z (CZm,02 + SZm,cz) = KZZZ (CZm,h2 + S2m,h2) :K22W2,h ' (854)

m=0 m=0

The contribution of the crustal compensation to degree-2 basin corrected gravity field is

characterized by y = W, . /W, ., , which is equal to 21% using the data from Table S1.

g1
This suggests that if all the degree-2 basin corrected topography is caused by crustal
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compensation, it can only explain 21% of the observed degree-2 gravitational potential
anomalies.

We may estimate the fossil bulge topography by scaling its present-day hydrostatic
value. Using equation (8) for |1=2 and m=0, the present-day hydrostatic bulge

topography, Cyopn na = —gﬂzRghz = —10 m, taking Q as the present-day’s lunar spin

rate, h2=2.5 as radial displacement fluid Love number, and g=1.63 m/s2. If we take the
fossil bulge to be 15-20 times of the present-day hydrostatic value, C,q 1 nq, then the
bulge topography at =2 and m=0 may range from -150 to -200 meters, which accounts
for 23-30% of the basin corrected topography at this harmonic (Table S1). This implies
that 70-77% of the corrected topography may be compensated at the Moho or ~15% of
the basin corrected gravitational potential anomalies may be due to the crustal
compensation. We think that this would not significantly affect our fossil bulge

interpretation of the basin corrected gravitational potential anomalies.

Table S1. Basin corrected degree-2 gravitational potential and topography

coefficients which have 4x normalization (Wieczorek, 2007, eq. 3)

Keane & Matsuyama (2014) Garrick-Bethall et al. (2014)
Gravity (x107%)2 Topography (km)P Gravity (x109)°
o -6.98 -0.65 -4.3
Cpo 6.01 0.51 3.9
C, . . 3.7
Sa _ _ 5.9
S _ _ -0.9

2 Defined in gravity reference frame of principal axis.
b Defined in topography reference frame of principal axis.
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Figure S1. Time evolution of lunar bulge sizes for different rheological models. a) For
models with Q:=200, ap=17Re and three different Te at 500 Myr, Te s00: 30 km, 50 km and 80 km.
Note that Te 500=50 km is used in the reference rheological model. In these calculations, Te
increases from O to T so0at 500 Myr as a function of square root of time and then to 150 km at
the present-day as a linear function of time. b) For models with Q:=200 and three different ao
using the reference rheological model (solid curves, which are the same as in Figure 2C) and a
rheological model in which T, is kept unchanged at 50 km from 500 Myr to the present-day
(dashed curves). ¢) For models with Q;=200 and three different ao using the reference rheological
model (solid curves, which are the same as in Figure 2c) and a rheological model in which the
mantle viscosity is 10 Pas.
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Figure S2. Spatial and temporal distribution of second-invariant of deviatoric stress for
model with Q1=25 and ap=11RE that reproduces the observed bulges. a) The stress at different
co-latitude (from 0 to 180°) for the top 100 km of the Moon at 10 Myr, b) 100 Myr, ¢) 500 Myr
and d) 4.4 Gyr (or present-day). Note that the stress is concentrated at shallow depths and remains
largely unchanged after the bulges are formed.
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Figure S3. Validation of computational method for simplified models. a) Time evolution of
normalized radial displacement for test cases 1 and 2 in which T, is fixed as 0 and 60 km,
respectively, and test case 3 in which T, increases linearly from 0 at t=0 to 60 km at t=400ty,
where ty, is the Maxwell time. A constant potential at 1=2 and m=0 is applied at t=0 and is kept
thereafter (i.e., a Heaviside function or step function of time). b) Time evolution of normalized
radial displacement for test cases 4-7 with different T, and applied potential. For cases 4-7,
model calculations start with the final bulge from test case 1 as initial conditions but with the
applied potential reduced by a factor of 2 either instantaneously at t=0 (for cases 4-6) or gradually
from t=0 to t=400t, (for case 7). In both a) and b), solid curves are from our new computational
method, and dashed curves are from CitcomSVE. These two methods produce nearly the same
results.
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